HEAD LOSES IN HORIZONTAL AND VERTICAL ORIFICEMETER A COMPARATIVE EVALUATION AND ANALYSES WITH APLLICATION OF STATISTICAL METHOD OF DATA RELIABILITY

  • Type: Project
  • Department: Chemical Engineering
  • Project ID: CNG0509
  • Access Fee: ₦5,000 ($14)
  • Pages: 137 Pages
  • Format: Microsoft Word
  • Views: 497
  • Report This work

For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

ABSTRACT
A comparative investigation was undertaken to determine the head loss coefficients for horizontally mounted and vertically mounted orifices using a Fluid mechanics and Heat transfer trainer developed in Nigeria. Experiments were carried out observing the procedure and the discharge of the flow of water was collected to obtain the volumetric flow rate and also read off the right and left limb of the horizontal and vertical manometers at different set points. The experimental measurements were subjected to further study to determine the head loss using the applied Bernoulli’s equation with addition of pump to the system. A graph of head loss against the kinetic head of water was plotted and the gradient of the graph yield the head loss coefficient (k). It was observed that there was no significant difference between the head loss coefficient for horizontal and vertical orifices. Hypothesis test was done to test the accuracy, precision and the statistical reliability of the head loss coefficient for the horizontal and vertical orifices, however better result was recorded in the horizontal orifice by statistical analysis. This report provides conclusion and recommendation to the challenges experienced.

TABLE OF CONTENT
Title page-----------------------------------------------------------------------i
Certification-------------------------------------------------------------------ii
Approval page----------------------------------------------------------------iii
Dedication--------------------------------------------------------------------iv
Acknowledgment-------------------------------------------------------------v
Abstract-----------------------------------------------------------------------vi
Table of content-------------------------------------------------------------vii

CHAPTER ONE
INTRODUCTION
1.1 Background of the study----------------------------------------------1
1.2 Historical developments-----------------------------------------------4
1.3 Significance of the study---------------------------------------------11
1.4 Problem statement----------------------------------------------------14
1.5 Objective of the study------------------------------------------------15
1.6 Scope of the study----------------------------------------------------16

CHAPTER TWO
INTRODUCTION
2.1 Head losses-------------------------------------------------------------17
8
2.2 Types of head loss-----------------------------------------------------20
2.2.1 Major head-----------------------------------------------------------20
2.2.2 Minor head-----------------------------------------------------------20 
2.3 Total head loss equation---------------------------------------------23
2.4 Statistical analysis----------------------------------------------------24
2.4.1 Accuracy of measurement-----------------------------------------24
2.4.2 Precision of measurement-----------------------------------------27
2.5 Reliability of measurement------------------------------------------28
2.6 The nature of statistical hypotheses-------------------------------29
2.6.1 The null and alternate hypotheses-------------------------------29
2.6.2 Two tailed and one tailed test-------------------------------------30
2.6.3 Two types of errors-------------------------------------------------31
2.6.4 Level of significance------------------------------------------------31
2.6.5 The critical region and acceptance region----------------------32
2.7 Test involving the t-distribution------------------------------------34
2.8 The z-test---------------------------------------------------------------37
2.9 The x2-test--------------------------------------------------------------38
2-10 Test concerning more than two population proportions-------39
2.11 Test of independence------------------------------------------------40
2.12 Test of goodness fit--------------------------------------------------40

CHAPTER THREE
RESEARCH METHODOLOGY
3.1 Research design-------------------------------------------------------42
3.2 Equipment setup------------------------------------------------------43
3.2.1 Sump tank-----------------------------------------------------------44
3.2.2 Test pipes------------------------------------------------------------44
3.2.3 Instrumentation panel---------------------------------------------45
3.3 Assumptions ----------------------------------------------------------46
3.4 Procedures-------------------------------------------------------------47
3.5 Apparatus--------------------------------------------------------------48

CHAPTER FOUR
DATA PRESENTATION AND ANALYSIS
4.1 Data analysis----------------------------------------------------------49
4.1.1 Measurements------------------------------------------------------50
4.2 Treatment of data-----------------------------------------------------52
4.2.  Computation of pressure drop------------------------------------52
4.2.2 Computation of velocity change----------------------------------53
4.2.3 Computation of pump power--------------------------------------54
4.2.4 Computation of head loss for horizontal orifice----------------54
4.2.5 Summation of the head loss coefficient--------------------------63
4.2.6 Computation of the head loss for vertical orifice---------------63
4.2.7 Summation of the head loss coefficient--------------------------71

CHAPTER FIVE
CONCLUSION AND RECOMMENDATION
5.1 Conclusion-------------------------------------------------------------72
5.2 Recommendation------------------------------------------------------73
REFERENCES---------------------------------------------------------------------------75
NOTATIONS------------------------------------------------------------------------------77
APPENDIX A -----------------------------------------------------------------------------78
APPENDIX B------------------------------------------------------------------------------95
APPENDIX C----------------------------------------------------------------------------105
APPENDIX D----------------------------------------------------------------------------110
APPENDIX E----------------------------------------------------------------------------137
HEAD LOSES IN HORIZONTAL AND VERTICAL ORIFICEMETER A COMPARATIVE EVALUATION AND ANALYSES WITH APLLICATION OF STATISTICAL METHOD OF DATA RELIABILITY
For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

Share This
  • Type: Project
  • Department: Chemical Engineering
  • Project ID: CNG0509
  • Access Fee: ₦5,000 ($14)
  • Pages: 137 Pages
  • Format: Microsoft Word
  • Views: 497
Payment Instruction
Bank payment for Nigerians, Make a payment of ₦ 5,000 to

Bank GTBANK
gtbank
Account Name Obiaks Business Venture
Account Number 0211074565

Bitcoin: Make a payment of 0.0005 to

Bitcoin(Btc)

btc wallet
Copy to clipboard Copy text

500
Leave a comment...

    Details

    Type Project
    Department Chemical Engineering
    Project ID CNG0509
    Fee ₦5,000 ($14)
    No of Pages 137 Pages
    Format Microsoft Word

    Related Works

    This project work “Reliability analysis of a continuous beam using Hasofer-Lind Reliability  Method” was primarily concerned with the effect of varying parameters such as load, modulus of  elasticity, moment of inertia and span length on the reliability of a continuous beam. The limit  state considered is deflection, and the allowable... Continue Reading
    Resistivity methods used in horizontal and vertical discontinuities in the electrical properties of the ground water detection (Geology ) Chapter One: Introduction The resistivity method is used in the study of the horizontal and vertical discontinuities in the electrical properties of the ground and also in the detection of three dimensional... Continue Reading
    ABSTRACT The consumption of the popular beverage coffee, increases day by day. However, upcoming brands of coffee with health benefits made by claims of the product ignites curiosity in the components of the coffee. The current study deals with the phytochemical analysis, antioxidant capacity and proximate analysis of Liven Alkaline Coffee,... Continue Reading
    ABSTRACT The consumption of the popular beverage coffee, increases day by day. However, upcoming brands of coffee with health benefits made by claims of the product ignites curiosity in the components of the coffee. The current study deals with the phytochemical analysis, antioxidant capacity and proximate analysis of Liven Alkaline Coffee,... Continue Reading
    TABLE OF CONTENTS TITLE PAGE...........................................................................................................I CERTIFICATION.......................................................................................II DEDICATION... Continue Reading
    CHAPTER1 1.0 INTRODUCTION 1.1 BACKGRAND OF STUDY Interpretation of data from Well test analysis have been based on the implicit assumption that the reservoir is a homogeneous single layer. However, the real petroleum reservoir, is a composition of layers with unique interlayer... Continue Reading
    CHAPTER1 1.0 INTRODUCTION 1.1 BACKGRAND OF STUDY      Interpretation of data from Well test analysis have been based on the implicit assumption that the reservoir is a homogeneous single layer. However, the  rea l petroleum reservoir, is a composition of layers with unique interlayer characteristics. The individual layers are usually... Continue Reading
    ABSTRACT This project is focus on the application of computer graphics in presentation of statistical data. The data ;1owever, is formatted to suit the purpose as demanded for presentation in the form of Pie chart and Bar cha1i. Each of the charts is used to give certain information about the data in pictorial form. Pie chart portrays the... Continue Reading
    ABSTRACT A power system is set up basically to meet the demands of the customers. However, interruptions which are largely unavoidable contribute to the unavailability of power and thus prevent power system from achieving this. In most cases, it is the sustained interruptions that greatly affect both the utility company and its customers. Hence,... Continue Reading
    ABSTRACT Estimation of rainfall for a desired return period is one of the pre-requisites for any design purpose at a particular site, which can be achieved by probabilistic approach. This study is aimed at using the statistical parameters of long-term observed rainfall data to generate monthly rainfall depth and estimate rainfall values at... Continue Reading
    Call Us
    whatsappWhatsApp Us