ABSTRACT
Demulsification (emulsion breaking) is necessary in many practical applications such as the petroleum industry, painting and waste-water treatment in environmental technology. Chemical demulsification is the most widely applied method of treating water-in-crude oil emulsions and involves the use of chemical additives to accelerate the emulsion breaking process. The effect of chemical demulsification operations on the stability and properties of water-in-crude oil emulsions was assessed experimentally. In this regard, Amine Demulsifier, Polyhydric Alcohol, Acid and Polymeric demulsifiers were used. Using samples of w/o, the data presented for several commercial-type demulsifiers show a strong connection (correlation) between good performance (fast coalescence) and the demulsifiers. The relative rates of water separation were characterized via beaker tests. The amine group demulsifiers promoted best coalescence of droplets. In contrast, polymeric demulsifier group is the least in water separation.
Many oil production processes present a significant challenge to oil and water treating equipment design and operations. The nature of crude oil emulsions changes continuously as the producing field depletes and condition change with time. These changes create the need to consider future performance. When designing treatment systems and those changes require an understanding of scale and upscaling.
This research work will explore all the theories and technologies involved in crude oil and water treatment, starting with emulsion theory formation, stabilization and the mechanism, though the technology to destabilize and separate from oil after the oil has been dehydrated. The research work will thus discuss desalting technologies and processes required to achieve the required oil specifications.