THE ABILITY OF AC/DC CONVERTERS TO GENERATE AND CONSUME REACTIVE POWER

  • Type: Project
  • Department: Electrical Engineering
  • Project ID: ELE0371
  • Access Fee: ₦5,000 ($14)
  • Pages: 18 Pages
  • Format: Microsoft Word
  • Views: 332
  • Report This work

For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

ABSTRACT

The conversion of an input AC power at a given frequency and voltage to an output power at different frequency and voltage can be obtained with static circuits called power converters, containing controllable power electronic devices. Various power converters have been developed to fulfill the requirements of the wind power generation. The most common option for the generators used in wind power generation is “asynchronous”, because support for speed variations is provided. This represents a major advantage, considering that the wind speed can exhibit fast variations, mainly during flurries. These result into significant mechanical stresses, smaller when an asynchronous generator is used as compared to a synchronous one, usually operating at a rated speed. The common way to convert the low-speed, high-torque mechanical power to electrical power is using a gearbox and a generator with standard speed. The Grid Connection Code for RPPs in South Africa has stipulated that all RPP shall be equipped with reactive power control functions capable of controlling the reactive power supplied by the RPP at the POC as well as a voltage control function capable of controlling the voltage at the POC via orders using set points and gradients. The reactive power and voltage control functions are mutually exclusive, which means that only one of the three functions mentioned below can be activated at a time. (a) Voltage control (b) Power Factor control (c) Q control. The Q control is a control function controlling the reactive power supply and absorption at the POC independently of the active power and the voltage.


TABLE OF CONTENTS

 

1.           INTRODUCTION.. 3

2.           Type 4 wind turbines generators...............................................................................4                                                                                          2.1         Operational behaviour of type 4 wind turbines. 4

3.            SYNCHRONOUS GENERATOR. 7

4.           POWER CONVERTER FOR WIND TURBINE GENERATOR SYSTEM 5

4.1.        Three phase AC/DC converter on the generator side. 6

4.1.1      Three phase  DC/AC converter on the grid side. 6

4.1.2       Reasons for not using diode bridge on the generator side. 7

4.1.3       Diode rectifier based converter. 7

5.            REACTIVE POWER AND VOLTAGE CONTROL. 7

5.1.         Reactive power generation and absorption on the grid side. 9

    5.1.1       Reactive power compensation for wind power plants…………………………….9

5.1.2    Mechanically-switched shunt and regulated reactors...............................................9

5.1.3       STATCOM System.. 10

6.            CONCLUSIONS.........................................................................................................15

                        

                    References…………………………………………………………………………………………..……………15

                    Appendix

                      List of Figures

                      Figure 1 Full conversion type 4 wind turbine …………………………………………………………..4

                      Figure 2: Type 4 WTG Short Circuit Current …………………….. ........................................4

                      Figure 3: Synchronous Generator …………………………....................................................5

                      Figure 4: Output voltage of back to back converter ………......................................... 6

                      Figure 5: Input current of back to back converter………………........ …………………………..6

                      Figure 6: Input current of diode rectifier based converter…………………………………………….7

                      Figure 7: Reactive power control functions for Renewable power plants …………………...8

                      Figure 8: Voltage control for the RPP ………………………………………………..........................8

                      Figure 9: Reactive power requirement of Wind energy facilities…………………………..9

                      Figure10: STATCOM description ………………………………..………………………………………...11

                      Figure11: Operating principle and operation area of STATCOM ………………….…...11

                      Figure12: Voltage (pu values) at wind turbine connection point ……………….…,…….12

                      Figure13: STATCOM Reactive power in MV Ar ……………………………………………….…..…12

                      Figure14: Voltage at wind turbine connection point with no reactive power injection. ….13

                      Figure15: Reactive power injected to the grid by STATCOM …………………….....…....13

                      Figure16: : P-V curves. With reactive power injection of STATCOM.….……………………....14

THE ABILITY OF AC/DC CONVERTERS TO GENERATE AND CONSUME REACTIVE POWER
For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

Share This
  • Type: Project
  • Department: Electrical Engineering
  • Project ID: ELE0371
  • Access Fee: ₦5,000 ($14)
  • Pages: 18 Pages
  • Format: Microsoft Word
  • Views: 332
Payment Instruction
Bank payment for Nigerians, Make a payment of ₦ 5,000 to

Bank GTBANK
gtbank
Account Name Obiaks Business Venture
Account Number 0211074565

Bitcoin: Make a payment of 0.0005 to

Bitcoin(Btc)

btc wallet
Copy to clipboard Copy text

500
Leave a comment...

    Details

    Type Project
    Department Electrical Engineering
    Project ID ELE0371
    Fee ₦5,000 ($14)
    No of Pages 18 Pages
    Format Microsoft Word

    Related Works

    ABSTRACT The conversion of an input AC power at a given frequency and voltage to an output power at different frequency and voltage can be obtained with static circuits called power converters, containing controllable power electronic devices. Various power converters have been developed to fulfill the requirements of the wind power generation.... Continue Reading
    ABSTRACT The conversion of an input AC power at a given frequency and voltage to an output power at different frequency and voltage can be obtained with static circuits called power converters, containing controllable power electronic devices. Various power converters have been developed to fulfill the requirements of the wind power generation.... Continue Reading
    ABSTRACT Electricity is a primary factor of development and should therefore be harnessed, and developed in an efficient manner. It should also be available in adequate quantity, quality and affordable prices. The level and intensity of commercial energy use in a country is a key indicator of the degree of economic growth and development. The... Continue Reading
    L (A CASE STUDY OF COMPUTER SCIENCE ND SOFTWARE LAB) CHAPTER ONE INTRODUCTION 1.1   BACKGROUND TO THE STUDY The use of renewable energy increased greatly just after the first big oil crisis in the late seventies. At that time, economic issues were the most important... Continue Reading
      TABLE OF CONTENTS DECLARATION i DEDICATION ii COPYRIGHT iii ACKNOWLEDGEMENTS iv ABSTRACT v LIST OF TABLES vii LIST OF FIGURES viii LIST OF ACCRONYMS AND ABBREVIATIONS ix OPERATIONAL DEFINITION OF TERMS x INTRODUCTION 1 1.0 Background of the Study 1 1.2 Solar Power System 2 1.3 Operating Principle of the DSTATCOM 3 1.4. Modelling of PV Array 5... Continue Reading
      TABLE OF CONTENTS DECLARATION    i DEDICATION    ii COPYRIGHT    iii ACKNOWLEDGEMENTS    iv ABSTRACT    v LIST OF TABLES    vii LIST OF FIGURES    viii LIST OF ACCRONYMS AND ABBREVIATIONS    ix OPERATIONAL DEFINITION OF TERMS    x INTRODUCTION    1 1.0 Background of the Study    1 1.2 Solar Power System    2... Continue Reading
    ABSTRACT This project work is aimed at developing an efficient Algorithm for the management of Electric Power network using fuzzy logic. The fuzzy logic model functions as a system operator in making decision for load shedding and transfer switching. The new technique uses the system data frequency variation, load variation and voltage variation... Continue Reading
    CHAPTER ONE VIEWS OF PHILOSOPHERS THROUGH THE AGES Perhaps what has become so dominant in the affairs and the nature of man, almost exclusively, is the need to be treated well. What seemed as latent but constantly boiling in every individual of all ages is a quest to get a fair... Continue Reading
    ABSTRACT This work analysed the current state of power system in Nigeria with emphasis on distribution system using Akwa Ibom Distribution System as a case study. The components of the study system were analyzed. This work adopted the analytical and simulation approach to reliability and stability assessment. Analysing the system the way it is... Continue Reading
    ABSTRACT This work analysed the current state of power system in Nigeria with emphasis on distribution system using Akwa Ibom Distribution System as a case study. The components of the study system were analyzed. This work adopted the analytical and simulation approach to reliability and stability assessment. Analysing the system the way it is... Continue Reading
    Call Us
    whatsappWhatsApp Us